Acta Crystallographica Section E

Structure Reports

 OnlineISSN 1600-5368

Anna I. Tursina, ${ }^{\text {a }}$
Natalia G. Bukhan'ko, ${ }^{\text {a }}$
Alexandr V. Gribanov, ${ }^{\text {a }}$
Viktor A. Shchelkunov ${ }^{b}$ and Yuliya V. Nelyubina ${ }^{\text {c }}$

${ }^{\text {a }}$ Department of Chemistry, Moscow State University, Leninskie Gory, 119992 Moscow, Russian Federation, ${ }^{\mathbf{b}}$ High School of Materials Science, Moscow State University, Leninskie Gory, 119992 Moscow, Russian Federation, and ${ }^{\text {c A. N. Nesmeyanov Institute of }}$ Organoelement Compounds, Russian Academy of Sciences, Vavilova Street, 119991 Moscow, Russian Federation

Correspondence e-mail: tursina@newmail.ru

Key indicators

Single-crystal X-ray study
$T=291 \mathrm{~K}$
Mean $\sigma(\mathrm{Al}-\mathrm{Ce})=0.004 \AA$
R factor $=0.034$
$w R$ factor $=0.084$
Data-to-parameter ratio $=22.5$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

A new ternary aluminide, $\mathrm{CePt}_{3} \mathrm{Al}_{5}$

The intermetallic title compound, cerium triplatinum pentaaluminium, crystallizes in a site-exchange variant of the $\mathrm{YNi}_{5} \mathrm{Si}_{3}$-type structure.

Received 17 November 2005 Accepted 18 November 2005 Online 30 November 2005

Comment

To date, the crystal structures of three ternary intermetallics from the $\mathrm{Ce}-\mathrm{Pt}-\mathrm{Al}$ system have been determined, namely CePtAl (Xue \& Schwer, 1994), $\mathrm{Ce}_{0.67} \mathrm{Pt}_{2} \mathrm{Al}_{5}$ and $\mathrm{Ce}_{1.33} \mathrm{Pt}_{3} \mathrm{Al}_{8}$ (Murashova et al., 2005). Here, we present the structure of the new title compound with a high aluminium content, $\mathrm{CePt}_{3} \mathrm{Al}_{5}$, exhibiting a site-exchange variant of the $\mathrm{YNi}_{5} \mathrm{Si}_{3}$ structure type (Aksel'rud et al., 1976).

A view of the structure is presented in Fig. 1. All atoms have significantly distorted coordination polyhedra. The Ce atom is surrounded by 12 Al atoms [distance range 3.218 (4)3.857 (4) \AA] and six Pt atoms [distance range 3.2393 (7)3.2670 (8) \AA], which form a hexagonal prism with six addi-

Figure 1
A view, along the b axis, of the $\mathrm{CePt}_{3} \mathrm{Al}_{5}$ structure. Part of the structure is shown in the polyhedral representation. [Symmetry codes: (i) $\frac{1}{2}-x, 1-y$, $-\frac{1}{2}+z$; (ii) $1-x, \frac{1}{2}+y, 1-z$; (iii) $1-x, \frac{1}{2}+y,-z$; (iv) $\frac{1}{2}-x, \frac{1}{2}-y, \frac{1}{2}+z$; (v) $\frac{1}{2}-x, 1-y, \frac{1}{2}+z$; (vi) $\frac{1}{2}+x, \frac{3}{2}-y, \frac{1}{2}-z$.]

Figure 2
The asymmetric unit of $\mathrm{CePt}_{3} \mathrm{Al}_{5}$, with displacement ellipsoids drawn at the 90% probability level.
tional atoms capping the square faces. The prism is completed by two Ce atoms capping the hexagonal faces of the prism, the $\mathrm{Ce} \cdots$ Ce distance being 4.1381 (8) \AA. The coordination polyhedra of the Pt atoms can be regarded as trigonal prisms with four (Pt 1 and Pt 2) and three (Pt 3) additional atoms. For the Al atoms, three types of coordination polyhedra are observed. Atoms Al1, Al2 and Al3 are at the centres of cuboctahedra. The pentagonal prism around atom Al4 is capped on four tetragonal faces. The coordination polyhedron of atom Al5 is a tetragonal prism with two additional atoms capping two lateral faces of the prism.

The interatomic distances in the structure of $\mathrm{CePt}_{3} \mathrm{Al}_{5}$ are in the typical range for intermetallic compounds (Table 1).

Experimental

A single crystal was taken from the surface of an ingot of nominal composition $10 \% \mathrm{Ce}, 30 \% \mathrm{Pt}$ and $60 \% \mathrm{Al}$ prepared by arc melting under an argon atmosphere. High-purity elements were used as starting materials: $\mathrm{Ce} 99.85 \%$, Pt 99.9% and $\mathrm{Al} 99.999 \%$. Homogenization annealing was performed at 770 K for 720 h .

Crystal data

$\mathrm{CePt}_{3} \mathrm{Al}_{5}$

$M_{r}=860.29$
Orthorhombic, Pnma
$a=20.651$ (4) Å
$b=4.1381$ (8) \AA
$c=7.2842(15) \AA$
$V=622.5(2) \AA^{3}$
$Z=4$
$D_{x}=9.180 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Enraf-Nonius CAD-4

 diffractometer
ω scans

Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.065, T_{\text {max }}=0.073$
2062 measured reflections
1259 independent reflections
1041 reflections with $I>2 \sigma(I)$

Mo $K \alpha$ radiation
Cell parameters from 25 reflections
$\theta=15.5-20.6^{\circ}$
$\mu=74.96 \mathrm{~mm}^{-1}$
$T=291$ (2) K
Prism, metallic light grey
$0.04 \times 0.04 \times 0.04 \mathrm{~mm}$

$$
R_{\mathrm{int}}=0.058
$$

$\theta_{\text {max }}=32.5^{\circ}$
$h=0 \rightarrow 31$
$k=-6 \rightarrow 4$
$l=0 \rightarrow 11$
1 standard reflection frequency: 120 min intensity decay: none

Refinement

> Refinement on F^{2} $R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034$ $w R\left(F^{2}\right)=0.084$ $S=0.99$ 1259 reflections 56 parameters $\begin{aligned} & w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0516 P)^{2}\right. \\ & \quad+2.6515 P] \\ & \quad \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}^{2}\right) / 3\end{aligned}$
$(\Delta / \sigma)_{\max }<0.001$ 。
$\Delta \rho_{\max }=3.95 \mathrm{e}^{\circ}{ }^{-3}$
$\Delta \rho_{\text {min }}=-5.87 \mathrm{e}^{-3}$
Extinction correction: SHELXL97
(Sheldrick, 1997)
Extinction coefficient: 0.00169 (14)

Table 1
Selected interatomic distances (\AA).

Ce-A15	3.218 (4)	Pt2-Al5 ${ }^{\text {viii }}$	2.500 (4)
$\mathrm{Ce}-\mathrm{Pt} 1^{\text {i }}$	3.2393 (7)	$\mathrm{Pt} 2-\mathrm{Al} 5^{\text {ix }}$	2.506 (2)
$\mathrm{Ce}-\mathrm{Pt} 2{ }^{\text {ii }}$	3.2529 (8)	Pt2-Al3	2.566 (4)
$\mathrm{Ce}-\mathrm{Pt} 3^{\text {ii }}$	3.2670 (8)	Pt2-Al1	2.655 (4)
$\mathrm{Ce}-\mathrm{Al2}{ }^{\text {i }}$	3.290 (3)	$\mathrm{Pt} 2-\mathrm{Al} 4^{\text {ix }}$	2.707 (3)
$\mathrm{Ce}-\mathrm{Al3}^{\text {iii }}$	3.356 (3)	Pt3-Al4	2.478 (4)
$\mathrm{Ce}-\mathrm{Al3}{ }^{\text {iii }}$	3.424 (4)	Pt3-Al3	2.512 (4)
$\mathrm{Ce}-\mathrm{Al1}{ }^{\text {i }}$	3.435 (3)	$\mathrm{Pt} 3-\mathrm{Al3}^{\text {i }}$	2.566 (2)
$\mathrm{Ce}-\mathrm{Al} 4^{\text {iii }}$	3.488 (4)	Pt3-Al2	2.567 (4)
$\mathrm{Ce}-\mathrm{All}{ }^{\text {iv }}$	3.553 (4)	$\mathrm{Pt} 3-\mathrm{Al} 2{ }^{\text {ix }}$	2.617 (3)
$\mathrm{Ce}-\mathrm{Al2}$	3.568 (4)	$\mathrm{Al} 1-\mathrm{Al} 5^{\text {ix }}$	2.797 (4)
$\mathrm{Ce}-\mathrm{Ce}^{\mathrm{v}}$	4.1381 (8)	Al1-Al1 ${ }^{\text {x }}$	2.827 (6)
$\mathrm{Pt} 1-\mathrm{Al5}{ }^{\text {vi }}$	2.457 (4)	$\mathrm{Al} 2-\mathrm{Al} 3{ }^{\text {iii }}$	2.816 (6)
Pt1-Al1	2.532 (4)	$\mathrm{Al} 2-\mathrm{Al3}{ }^{\text {i }}$	2.912 (4)
Pt1-Al2	2.658 (4)	$\mathrm{Al} 2-\mathrm{Al} 4^{\text {ii }}$	2.956 (4)
Pt1-Al1 ${ }^{\text {vii }}$	2.661 (3)	Al4-Al5	2.793 (6)
Pt1-Al4 ${ }^{\text {i }}$	2.664 (3)	$\mathrm{Al5}-\mathrm{Al5}{ }^{\text {xi }}$	2.730 (5)
$\mathrm{Pt} 1-\mathrm{Pt} 2{ }^{\text {iii }}$	3.0092 (9)		

The atomic parameters were standardized with the program STRUCTURE TIDY (Gelato \& Parthé, 1987). The highest peak and deepest hole in the final difference map are located $1.54 \AA$ from Al3 and $0.97 \AA$ from Al4, respectively.

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 1998) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

This work was supported by the RFBR, project No. 05-0333045.

References

Aksel'rud, L. G., Yarovets, V. I., Bodak, O. I. \& Gladyshevskii, E. I. (1976). Kristallografiya, 21, 210-211.
Brandenburg, K. (1998). DIAMOND. Version 2.1b. Crystal Impact GbR, Bonn, Germany.
Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Gelato, L. M. \& Parthé, E. (1987). J. Appl. Cryst. 20, 139-143.
Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
Murashova, E. V., Tursina, A. I., Bukhan'ko, N. G., Gribanov, A. V., Chernyshev, I. V. \& Seropegin, Y. D. (2005). J. Alloys Compd. 398, 100-105.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Xue, B. \& Schwer, H. (1994). J. Alloys Compd. 204, L25-L26.

